

Cells-to-CpG[™] Bisulfite Conversion Kit (50)

Protocol

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.

Information in this document is subject to change without notice.

APPLIED BIOSYSTEMS DISCLAIMS ALL WARRANTIES WITH RESPECT TO THIS DOCUMENT, EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TO THE FULLEST EXTENT ALLOWED BY LAW, IN NO EVENT SHALL APPLIED BIOSYSTEMS BE LIABLE, WHETHER IN CONTRACT, TORT, WARRANTY, OR UNDER ANY STATUTE OR ON ANY OTHER BASIS FOR SPECIAL, INCIDENTAL, INDIRECT, PUNITIVE, MULTIPLE OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM THIS DOCUMENT, INCLUDING BUT NOT LIMITED TO THE USE THEREOF, WHETHER OR NOT FORESEEABLE AND WHETHER OR NOT APPLIED BIOSYSTEMS IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Limited Use Label License No. 358: Research Use Only

The purchase of this product conveys to the purchaser the limited, non-transferable right to use the purchased amount of the product only to perform internal research for the sole benefit of the purchaser. No right to resell this product or any of its components is conveyed expressly, by implication, or by estoppel. This product is for internal research purposes only and is not for use in commercial applications of any kind, including, without limitation, quality control and commercial services such as reporting the results of purchaser's activities for a fee or other form of consideration. For information on obtaining additional rights, please contact outlicensing@lifetech.com or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.

Limited Use Label License: Product Disclaimer

The products in this protocol may be covered by one or more Limited Use Label License(s). Please refer to the respective product documentation or the Applied Biosystems website under **www.appliedbiosystems.com** for the comprehensive license information. By use of these products, the purchaser accepts the terms and conditions of all applicable Limited Use Label Licenses. These products are sold for research use only, and are not intended for human or animal diagnostic or therapeutic uses unless otherwise specifically indicated in the applicable product documentation or the respective Limited Use Label License(s). For information on obtaining additional rights, please contact **outlicensing@lifetech.com** or Out Licensing, Life Technologies, 5791 Van Allen Way, Carlsbad, California 92008.

TRADEMARKS

The trademarks mentioned herein are the property of Life Technologies Corporation or their respective owners.

ExoSAP-IT is a registered trademark of Affymetrix, Inc. AmpliTaq Gold is a registered trademark of Roche Molecular Systems, Inc.

© 2010 Life Technologies Corporation. All rights reserved.

Part Number 4448998 Rev. C 10/2010

Contents

	About This Guide	5
	Purpose	
	Safety alert words	
PROTOCOL	Cells-to-CpG [™] Bisulfite Conversion Kit (50)	7
	Product information	7
	Purpose of the product	
	Kit contents and storage	
	Materials and equipment required but not included	
	Worfklow	
	Prepare bisulfite-converted DNA	
	Acceptable sample types and recommended input amounts Prepare the reagents (for new kits)	
	Prepare the Conversion Reagent	
	Lyse the cells and denature the DNA	
	Perform bisulfite conversion of the denatured DNA	
	Desalt and desulfonate the samples	12
	Assess the yield and quality of the bisulfite-converted DNA	14
	After bisulfite conversion	14
	HRM analysis and sequencing by capillary electrophoresis	
	Sequencing by capillary electrophoresis	
	Troubleshooting	16
APPENDIX A	Ordering Information	19
	How to order Cells-to-CpG™ kits	19
	Materials and equipment for using the control kits	19
	Materials and equipment for high resolution melting analysis	20
	MeltDoctor™ HRM reagents	
	Equipment and software	
	Supplies	
	Materials and equipment for sequencing	
	Equipment	
	Reagents	
	rougeino	

APPENDIX B	Use Controls for Bisulfite Conversion	25
	Product information	25
	Purpose of the control kit	25
	Kit components and storage	25
	Use an external sample control for bisulfite conversion	26
	Perform bisulfite conversion of Control Sample 1	26
	How to use the bisulfite-converted Control Sample 1	26
	Determine the efficiency of bisulfite conversion	27
	Required materials	27
	Amplify the unconverted and converted human genomic DNA	27
	Review the size of the PCR products	28
	Determine the efficiency of bisulfite conversion	
	Expected results	
	Quantify the amount of bisulfite-converted DNA	32
	Required materials	
	Guidelines for preparing the standard dilution series	
	Example of standard dilution series	
	Amplify and melt the bisulfite-converted human genomic DNA	
	Review the amplification results	
	Determine the integrity of the bisulfite-converted DNA	
	Required materials	
	Amplify the unconverted and converted human genomic DNA	
	Review the size of the PCR products	36
APPENDIX C	Prepare Methylated DNA Standards for HRM Analysis	37
	Product information	37
	Purpose of the kit	
	Kit components and storage	
	Prepare methylated DNA standards	
APPENDIX D	Safety	39
	Chemical safety	39
	General chemical safety	
	SDSs	
	Biological hazard safety	
	Documentation and Support	43
	Related documentation	43
	Obtaining support	43
	• •	

About This Guide

Purpose

The Cells-to-CpGTM Bisulfite Conversion Kit (50) Protocol provides instructions and troubleshooting information for using the Cells-to-CpGTM Bisulfite Conversion Kit (50).

Safety information

Note: For general safety information, see this section and Appendix D, "Safety" on page 39. When a hazard symbol and hazard type appear by an instrument hazard, see the "Safety" Appendix for the complete alert on the instrument.

Safety alert words

Four safety alert words appear in Applied Biosystems user documentation at points in the document where you need to be aware of relevant hazards. Each alert word—IMPORTANT, CAUTION, WARNING, DANGER—implies a particular level of observation or action, as defined below:

IMPORTANT! – Indicates information that is necessary for proper instrument operation or accurate chemistry kit use.

CAUTION! – Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

WARNING! – Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

DANGER! – Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury. This signal word is to be limited to the most extreme situations.

SDSs

The Safety Data Sheets (SDSs) for any chemicals supplied by Applied Biosystems or Ambion are available to you free 24 hours a day. For instructions on obtaining SDSs, see "SDSs" on page 40.

IMPORTANT! For the SDSs of chemicals not distributed by Applied Biosystems or Ambion contact the chemical manufacturer.

Cells-to-CpG[™] Bisulfite Conversion Kit (50)

Product information

Purpose of the product

Use the Cells-to- CpG^{TM} Bisulfite Conversion Kit (50) (PN 4445555) as the first step in your methylation study. This kit allows you to perform direct and fast conversion of unmethylated cytosines to uracil in purified genomic DNA, cultured cells, or blood, in a single-tube format.

You can use the converted DNA in your methylation study to:

- Perform high-resolution melting (HRM) analysis of the bisulfite-converted samples and converted methylation standards to determine the percentage of methylated cytosines in the samples.
- Perform cycle sequencing analysis of converted and untreated samples to determine which cytosines are methylated.

Kit contents and storage

Sufficient materials are supplied in the Cells-to-Cp $G^{\text{\tiny TM}}$ Bisulfite Conversion Kit (50) to perform bisulfite conversion of 50 samples. Store all kit components at room temperature.

Component	Amount
Binding Buffer	1 × 50-rxn bottle
Binding Columns	50 columns
Conversion Buffer	2 × 1.5 mL
Conversion Reagent	5 × 10-rxn tubes
Denaturation Reagent	0.5 mL
Desulfonation Reagent	1 × 50-rxn bottle
Elution Buffer	2 × 1 mL
Elution Tubes	50 tubes
Lysis Enhancer	0.5 mL
Wash Buffer	1 × 50-rxn bottle

Materials and equipment required but not included

For optional materials and equipment and more ordering information, see Appendix A, "Ordering Information" on page 19.

For the SDS of any chemical not distributed by Applied Biosystems, contact the chemical manufacturer. Before handling any chemicals, refer to the SDS provided by the manufacturer, and observe all relevant precautions.

Item	Source
Veriti® 96-Well Thermal Cycler	Applied Biosystems PN 4375786
MicroAmp [®] Clear Adhesive Film, 100 films	Applied Biosystems PN 4306311
MicroAmp® Optical Film Compression Pad, 5 each	Applied Biosystems PN 4312639
Nuclease-free Water (not DEPC-treated) (1 × 500 mL)	Applied Biosystems PN AM9930
Reaction plates compatible with your thermal cycler: • MicroAmp® Fast 96-Well Reaction Plate, 0.1 mL, 10 plates • MicroAmp® Optical 96-Well Reaction Plate, 10 plates	Applied Biosystems PN 4346907 PN N8010560
Reaction tubes or strips and caps compatible with your thermal cycler: • MicroAmp® Reaction Tube with Cap, 0.2 mL, 1000 tubes • MicroAmp® 8-Tube Strip, 0.2 mL, 125 strips • MicroAmp® 8-Tube Strip, Assorted Colors, 0.2 mL, 120 strips	Applied BiosystemsN8010540N8010580N8010838
Centrifuge with plate adapters	Major laboratory suppliers (MLS)
Ethanol, molecular biology grade, ≥99.5% or 200 proof	MLS
Isopropyl alcohol, ACS reagent grade, ≥99.5%	MLS
Microcentrifuge	MLS
Microcentrifuge tubes	MLS
Pipette tips, nuclease-free	MLS
Pipettors, positive displacement or air-displacement	MLS
Vortexer	MLS
Water bath at 60 °C	MLS

Worfklow

This protocol provides instructions for preparing converted DNA using the Cells-to- $CpG^{^{TM}}$ Bisulfite Conversion Kit (50).

Prepare bisulfite-converted DNA

Prepare the reagents (for new kits) (page 10)

Prepare the Conversion Reagent (page 10)

Lyse the cells and denature the DNA (page 11)

Perform bisulfite conversion of the denatured DNA (page 11)

Desalt and desulfonate the samples (page 12)

Prepare bisulfite-converted DNA

Acceptable sample types and recommended input amounts

Input type	Optimal input amount	Minimum input amount	Maximum input amount
Purified gDNA	100 ng to 1 μg	50 pg	5 μg
Cultured cells	5000 cells to 10 ⁵ cells	10 cells	10 ⁵ cells
Blood	2.5 µL	1 μL	5 μL

Note: Use the Unconverted Human Male gDNA (Control Sample 1) from the Cells-to- CpG^{TM} Bisulfite Conversion and Quantitation Control Kit as an external sample control for bisulfite conversion. For instructions, see page 26.

Prepare the reagents (for new kits)

Before you use a new kit, prepare the Binding Buffer, Wash Buffer, and Desulfonation Reagent.

- 1. Add 14 mL isopropyl alcohol (≥99.5%) to the bottle of Binding Buffer, then swirl the bottle to mix.
- **2.** Add 44 mL ethanol (≥99.5% or 200 proof) to each bottle of Wash Buffer, then swirl the bottles to mix.
- **3.** Add 10 mL ethanol (≥99.5% or 200 proof) to each bottle of Desulfonation Reagent, then swirl the bottles to mix.

After you prepare the reagents, you will have sufficient reagents for 50 reactions.

Prepare the Conversion Reagent

For optimal results, prepare the Conversion Reagent immediately before performing the bisulfite conversion. Each tube of prepared Conversion Reagent contains sufficient reagent for 10 bisulfite conversion reactions.

1. Add Denaturation Reagent and water to the powder in one Conversion Reagent tube, then mix well:

Component	Volume
Denaturation Reagent	26 µL
Water	0.8 mL

- 2. Add 50 µL Conversion Buffer to the Conversion Reagent tube, then mix again.
- **3.** To improve solubility of the powder, place the Conversion Reagent tube in a 60 °C water bath for 10 minutes.

4. Mix by vortexing 2 or 3 times during the 10-minute incubation.

Note: It is normal to see trace amounts of undissolved powder in the Conversion Reagent.

After you prepare the bisulfite conversion reactions, you can store any remaining Conversion Reagent at -20 °C for up to 1 month. Before use, thaw the Conversion Reagent at 50 °C for 10 minutes, then vortex.

Lyse the cells and denature the DNA

If you are starting with purified gDNA, skip the cell lysis step.

- 1. Set up the PCR tubes or reaction plate. For each sample:
 - **Purified gDNA**: Pipet 45 μ L into a PCR tube or reaction plate, then skip cell lysis and proceed with denaturing the DNA.
 - Cultured cells, blood, tissue, and FFPE samples: Pipet $40~\mu L$ into a PCR tube or reaction plate.
- 2. (Cultured cells, blood, tissue, and FFPE samples only) To lyse the cells in the PCR tube or reaction plate, add 5 μ L Lysis Enhancer to 40 μ L of sample, then swirl the tube or pipet up and down to mix.
- **3.** Denature the DNA in the PCR tube or reaction plate:
 - a. Add 5 μL Denaturation Reagent to 45 μL lysed cells or purified gDNA, then swirl the tube or pipet up and down to mix.
 - **b.** Incubate at 50 °C for 10 minutes.

Perform bisulfite conversion of the denatured DNA

Convert unmethylated cytosines to uracil in the denatured DNA samples.

1. Add 100 μ L prepared Conversion Reagent to each denatured sample for a total reaction volume of 150 μ L, then mix the reaction.

Note: The reaction should not contain any undissolved Conversion Reagent powder after mixing.

- **2.** Incubate the sample in a thermal cycler, selecting the appropriate thermal cycling conditions for your samples:
 - For gDNA input between 100 ng and 2 μg, use general thermal cycling conditions with acceptable recovery and conversion:

Temp	Time
65 °C	30 minutes
95 °C	1.5 minutes
65 °C	30 minutes
95 °C	1.5 minutes

Temp	Time
65 °C	30 minutes
4 °C	Up to 4 hours

 For crude samples and gDNA input ≥2 µg, use thermal cycling conditions optimal for conversion but with slightly decreased recovery for long amplicons:

Temp	Time	
95 °C	3 minutes	
65 °C	60 minutes	
95 °C	3 minutes	
65 °C	30 minutes	
4 °C	Up to 4 hours	

 For gDNA input between 50 pg and 100 ng, use thermal cycling conditions optimal for recovery but with decreased conversion rates for high sample input:

Temp	Time	
65 °C	30 minutes	
95 °C	0.5 minutes	
65 °C	30 minutes	
95 °C	0.5 minutes	
65 °C	30 minutes	
4 °C	Up to 4 hours	

STOPPING POINT If you cannot proceed with desalting and desulfonation immediately, you can store the converted sample at $-20\,^{\circ}\text{C}$ for up to 2 days. Thaw the samples at room temperature, then proceed with desalting and desulfonation.

Desalt and desulfonate the samples

Remove salts from the DNA samples, then desulfonate the DNA to remove the sulfonic groups.

- 1. Spin the Binding Column with a microcentrifuge tube at 10,000 rpm for 1 minute.
- **2.** Load the Binding Column:
 - **a.** Add $600 \, \mu L$ of Binding Buffer to the column.
 - **b.** Add the converted sample (150 μ L) to the column containing the Binding Buffer.

- **c.** Close the cap, then invert the column several times to mix.
- **d.** Spin the column at 10,000 rpm for 1 minute.
- e. Discard the flowthrough.
- **3.** Wash the sample to remove salts:
 - **a.** Return the column to the microcentrifuge tube.
 - **b.** Add 600 µL of Wash Buffer to the column.
 - **c.** Spin the column at 10,000 rpm for 1 minute, or until all the Wash Buffer passes through the column.
 - **d.** Discard the flowthrough.

4. Desulfonate the DNA:

- **a.** Return the column to the microcentrifuge tube.
- **b.** Add 200 µL of Desulfonation Reagent to the column.
- **c.** Close the cap, then let the column stand at room temperature (20–30 $^{\circ}$ C) for 15 minutes.

IMPORTANT! It is important that you close the cap before the 15-minute incubation.

- **d.** Spin the column at 10,000 rpm for 1 minute.
- e. Discard the flowthrough.

5. Wash the DNA:

- **a.** Return the column to the microcentrifuge tube.
- **b.** Add 400 µL of Wash Buffer to the column.
- **c.** Spin the column at 10,000 rpm for 2 minutes, or until all the Wash Buffer passes through the column.
- **d.** Discard the flowthrough.
- **6.** Remove any residual Wash Buffer:
 - **a.** Return the column to the microcentrifuge tube.
 - **b.** Spin the column at 10,000 rpm for 1 minute.

IMPORTANT! Trace amounts of Wash Buffer could inhibit downstream reactions.

c. Discard the flowthrough and the microcentrifuge tube.

7. Elute the DNA:

- **a.** Place the column onto a new Elution Tube.
- **b.** Add 40 µL Elution Buffer directly to the center of the column.

Note: If you started with less than 10 ng gDNA, you can reduce the elution volume to 10 μL

- c. Let the column stand at room temperature (20–30 °C) for 2 minutes.
- **d.** Spin the column at 10,000 rpm for 1 minute.

STOPPING POINT Store the converted DNA at $4\,^{\circ}\text{C}$ for up to 6 months. For long-term storage, store at $-20\,^{\circ}\text{C}$ or $-70\,^{\circ}\text{C}$. Store aliquots to avoid multiple freeze-thaw cycles.

Assess the yield and quality of the bisulfite-converted DNA

Use the Cells-to- CpG^{TM} Bisulfite Conversion and Quantitation Control Kit to assess the quality of the converted DNA. For instructions on how to use the control kit, see Appendix B on page 25.

- 1. Determine the efficiency of bisulfite conversion (page 27).
- **2.** Quantify the amount of bisulfite-converted DNA (page 32).
- **3.** Determine the integrity of the bisulfite-converted DNA (page 35).

After bisulfite conversion

After you prepare the converted DNA, you can proceed with:

- High resolution melting (HRM) analysis and sequencing analysis (page 15) or
- Sequencing analysis (page 16)

HRM analysis and sequencing by capillary electrophoresis

For instructions, see the High Resolution Melting Getting Started Guide (PN 4393102).

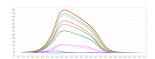
Perform high resolution melting analysis

Design the primers using Methyl Primer Express® Software v1.0

Optimize the HRM reactions

Prepare the HRM reactions using MeltDoctor[™] HRM Master Mix or the MeltDoctor[™] HRM Reagent Kit

Amplify and melt the DNA using the 7500 Fast Real-Time PCR System or the 7900HT Fast Real-Time PCR System


Review the high-resolution melting data using High Resolution Melting Software v2.0

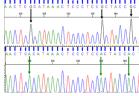
Sequence the variants (optional)

Purify the PCR product using ExoSAP-IT® and an Applied Biosystems thermal cycler

Perform cycle sequencing reactions using the BigDye® Terminator v1.1 Cycle Sequencing Kit and an Applied Biosystems thermal cycler

Clean up the sequencing reaction using the BigDye XTerminator® Purification Kit

Perform capillary electrophoresis using an Applied Biosystems DNA Sequencer



Review the sequencing data using SeqScape® Software or Variant Reporter® Software

Sequencing by capillary electrophoresis

Sequence the samples

Design the primers using Methyl Primer Express® Software v1.0

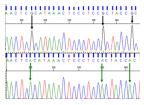
Amplify the DNA using AmpliTaq $\operatorname{Gold}^{\circledR}$ DNA Polymerase and an Applied Biosystems thermal cycler

Perform cycle sequencing reactions using the BigDye[®] Terminator v1.1 Cycle Sequencing Kit or BigDye[®] Terminator v3.1 Cycle Sequencing Kit and an Applied Biosystems thermal cycler

Clean up the sequencing reaction using the BigDye XTerminator® Purification Kit

Perform capillary electrophoresis using an Applied Biosystems DNA Sequencer

Review the sequencing data using SeqScape® Software or Variant Reporter® Software



Troubleshooting

Observation	Possible cause	Recommended action
Incomplete conversion: • Conversion rate is <99% using the Unconverted Control Sample 1	Too much DNA template added to the bisulfite conversion reactions	Repeat the reactions using the recommended amounts of DNA template (page 10).
provided with the kit or	Temperature variability during the bisulfite conversion reactions	Verify the performance of your thermal cycler.
 DNA sequence after bisulfite conversion shows Cs instead of Ts at unmethylated Cs 	Insufficient amounts of denaturing or conversion reagents added to the samples	Repeat the denaturation or the bisulfite conversion using the harsher conversion conditions.

Observation	Possible cause	Recommended action
C _T values much higher than expected when quantifying the amount of converted DNA using the control kit (page 33)	Low rate of bisulfite conversion	Determine the efficiency of bisulfite conversion (page 27).
	Recovery rate is low	Check the OD 260 reading of the converted DNA.
	PCR reactions contain carryover contaminants such as isopropyl alcohol or ethanol that inhibit the PCR and shift the Tm in melt curves	Use less converted DNA sample in the PCR reactions or use a vacuum centrifuge to evaporate the isopropyl alcohol and ethanol.
All PCR reactions using the conversion and quantitation kit failed	PCR master mix contains uracil-N-glycosylase (UNG)	Use PCR master mix with no UNG.
	PCR reactions do not contain a dye for real-time PCR detection	 Run the PCR products on an agarose gel to check whether the samples amplified. Repeat the PCR reactions, making sure that you add a dye for real-time PCR detection.
Recovery rate is <50%	Poor quality of the starting gDNA template	Check the quality of the starting gDNA template.
	Insufficient isopropyl alcohol in the Binding Buffer or insufficient ethanol in the Wash Buffer	Verify that isopropyl alcohol was added to the Binding Buffer and that ethanol was added to the Wash Buffer before desalting and desulfonation.
	Dirty NanoDrop spectrophotometer	Check the OD reading at 260 nm. If the OD 260 is £1.1, clean the NanoDrop spectrophotometer and repeat the OD reading.
Unsuccessful amplification of long amplicons	Degraded converted DNA degraded	Repeat the bisulfite conversion using milder conversion conditions.
	PCR conditions not optimized for longer amplicons	Perform PCR optimization (extension time, number of cycles, MgCl ₂ concentrations, and so on).
	Insufficient amounts of converted DNA in the PCR reactions	Add ≥10 ng of converted DNA to the PCR reactions.
	PCR reactions do not contain sufficient primer concentrations	Add up to 600 µM of each primer to the PCR reactions.
Amplification observed with negative controls	Template contamination in reagents, in the laboratory, or on equipment	Clean up the lab and use new reagents for PCR. Make sure you follow best practices in PCR to avoid contamination.
	Primer-dimer formation	Check the primer design and if needed, design new primers.
		Reduce the primer concentrations in the PCR reactions.
		Reduce the number of cycles in the amplification run.

Observation	Possible cause	Recommended action
Failed PCR amplifications for direct- converted DNA from FFPE samples	DNA degraded in long-term archived FFPE samples Insufficient converted DNA in the PCR reactions	 Check the quality of the converted DNA and quantify the amount of bisulfite-converted DNA (page 32). Combine converted DNA from different slides. Perform preamplification of the targets of interest.
Long amplicons cannot be sequenced successfully using capillary electrophoresis	Long stretches of Ts after conversion causes slippage of the DNA polymerase during single strand extension	 Sequence the opposite strand using the reverse primer. or Redesign the sequencing primers to avoid long Ts.

Ordering Information

For the SDS of any chemical not distributed by Applied Biosystems, contact the chemical manufacturer. Before handling any chemicals, refer to the SDS provided by the manufacturer, and observe all relevant precautions.

How to order Cells-to-CpG[™] kits

For information on the Cells-to-CpG[™] Bisulfite Conversion Kits, go to the Applied Biosystems website at **www.appliedbiosystems.com** and select:

Products ▶ Gene Expression ▶ Controls, Reagents, & Kits ▶ DNA Methylation Analysis Kits (DNA Sequencing Based) ▶ Cells-to-CpG[™] Bisulfite Conversion Kit

Item	Source
Cells-to-CpG [™] Bisulfite Conversion Kit (2x96)	Applied Biosystems PN 4445554
Cells-to-CpG [™] Bisulfite Conversion Kit (50)	Applied Biosystems PN 4445555
Cells-to-CpG [™] Bisulfite Conversion and Quantitation Control Kit	Applied Biosystems PN 4445553
Cells-to-CpG [™] Methylated and Unmethylated gDNA Control Kit	Applied Biosystems PN 4445552

Materials and equipment for using the control kits

Item	Source
E-Gel® 4% High-Resolution Agarose 18-Pak	Invitrogen PN G501804
MeltDoctor [™] HRM Master Mix, 5 mL bottle	4415440
MeltDoctor [™] HRM Master Mix, 5×5 mL bottle	4415452
MeltDoctor [™] HRM Master Mix, 10×5 mL bottle	4415450
MeltDoctor [™] HRM Master Mix, 50 mL bottle	4409535
Real-time PCR instrument (96-well system): • 7500 Fast Real-Time PCR System	Applied Biosystems
 7900HT Fast Real-Time PCR System StepOnePlus[™] Real-Time PCR System 	

Item	Source
TrackIt [™] 50 bp DNA Ladder	Invitrogen PN 10488-043
UltraPure™ DNase/RNase-Free Distilled Water, 500 mL	Invitrogen PN 10977-015
 M13 forward and reverse sequencing primers: M13 Forward (-20), 2 μg M13 Reverse, 2 μg 	Invitrogen PN N520-02 PN N530-02
Note: Use only if the HRM PCR product contains M13 sequences.	
Deionized Water	MLS

Materials and equipment for high resolution melting analysis

MeltDoctor[™] HRM reagents

Item	Applied Biosystems part number
MeltDoctor [™] HRM Master Mix, 5 mL bottle	4415440
MeltDoctor [™] HRM Master Mix, 5×5 mL bottle	4415452
MeltDoctor [™] HRM Master Mix, 10×5 mL bottle	4415450
MeltDoctor [™] HRM Master Mix, 50 mL bottle	4409535
 MeltDoctor[™] HRM Positive Control Kit: MeltDoctor[™] HRM Allele A DNA (20×), 150 μL MeltDoctor[™] HRM Allele G DNA (20×), 150 μL MeltDoctor[™] HRM Allele A/G DNA (20×), 150 μL MeltDoctor[™] HRM Primer Mix (20×), 500 μL 	4410126
MeltDoctor [™] HRM Reagent Kit: • AmpliTaq Gold [®] 360 DNA Polymerase • AmpliTaq Gold [®] 360 Buffer • 360 GC Enhancer • GeneAmp [®] dNTP Blend • MeltDoctor [™] HRM Dye (20×)	4425557

Equipment and software

Item	Source
7500 Fast Real-Time PCR System with Notebook Computer	Applied Biosystems PN 4351106
7500 Fast Real-Time PCR System with Tower Computer	Applied Biosystems PN 4351107

Item	Source
7900HT Fast Real-Time PCR System with 384-Well Block Module	Applied Biosystems PN 4329001
7900HT Fast Real-Time PCR System with Fast 96-Well Block Module	Applied Biosystems PN 4351405
High Resolution Melting (HRM) Software v2.0	Applied Biosystems PN 4397808
Methyl Primer Express® Software v1.0	Applied Biosystems PN 4376041
Centrifuge with plate adapters	Major laboratory suppliers (MLS)
Lab equipment	MLS
Microcentrifuge	MLS
Microcentrifuge tubes	MLS
Pipettors and pipette tips	MLS
Vortexer	MLS

Supplies

Item	Source
Appropriate reaction plate for your instrument: • MicroAmp® Fast Optical 96-Well Reaction Plate with Barcode, 0.1 mL • MicroAmp® Fast Optical 48-Well Reaction Plate	Applied BiosystemsPN 4346906 and 4366932PN 4375816
MicroAmp® 96- & 384-Well Optical Adhesive Film: • 25 films • 100 films	Applied Biosystems PN 4360954 PN 4311971
MicroAmp® 48-Well Optical Adhesive Film: • 25 films • 100 films	Applied Biosystems
Microcentrifuge tubes	MLS
Pipettors and pipette tips	MLS

Materials and equipment for sequencing

Equipment

ltem	Source
Applied Biosystems DNA sequencer:	Applied Biosystems
Applied Biosystems 3500/3500xl DNA Analyzer	
Applied Biosystems 3730/3730xl DNA Analyzer	
Applied Biosystems 3130/3130xl DNA Analyzer	
Applied Biosystems 3100/3100-Avant DNA Analyzer	
Veriti® 96-Well Fast Thermal Cycler	Applied Biosystems
Centrifuge with plate adapters	MLS
Microcentrifuge	MLS
Vortexer	MLS

Supplies

Item	Source
MicroAmp® Clear Adhesive Film, 100 films	Applied Biosystems PN 4306311
MicroAmp® Optical Film Compression Pad, 5 each	Applied Biosystems PN 4312639
Wide-bore (>1 mm) pipette tips:	
Wide-Orifice Tips	Rainin Instrument LLC
Clear Wide Bore Tips	Axygen Scientific Inc.
Microcentrifuge tubes	MLS
Pipettors and pipette tips	MLS

Reagents

Item	Source
AmpliTaq Gold [®] 360 Master Mix, 1 mL	Applied Biosystems PN 4398876
AmpliTaq Gold [®] 360 Master Mix, 5 mL	Applied Biosystems PN 4398881
AmpliTaq Gold [®] 360 Master Mix, 10 × 5 mL	Applied Biosystems PN 4398901
AmpliTaq Gold [®] 360 Master Mix, 50 mL	Applied Biosystems PN 4398886

Item	Source
AmpliTaq Gold [®] 360 Master Mix Protocol	Applied Biosystems PN 4398944
AmpliTaq Gold [®] 360 Master Mix Quick Reference Card	Applied Biosystems PN 4398954
BigDye [®] Terminator v1.1 Cycle Sequencing Kit, 100 reactions	Applied Biosystems PN 4337450
BigDye XTerminator [®] Purification Kit, 2 mL (~100 20-μL reactions)	Applied Biosystems PN 4376486
 M13 forward and reverse sequencing primers: M13 Forward (-20), 2 μg M13 Reverse, 2 μg 	InvitrogenPN N520-02PN N530-02
Note: Use only if the HRM PCR product contains the M13 sequences.	
UltraPure™ DNase/RNase-Free Distilled Water, 500 mL	Invitrogen PN 10977-015
ExoSAP-IT®, 100 reactions	USB Corporation PN 78200
Deionized Water	MLS

Appendix A Ordering Information *Materials and equipment for sequencing*

Use Controls for Bisulfite Conversion

Product information

Purpose of the control kit

When you perform methylation studies, you can use the components of the Cells-to- CpG^{TM} Bisulfite Conversion and Quantitation Control Kit (PN 4445553) to serve as controls during the bisulfite conversion and amplification of the bisulfite-converted DNA:

Use an external sample control for bisulfite conversion	26
Perform bisulfite conversion of Control Sample 1	26
Determine the efficiency of bisulfite conversion	29
Quantify the amount of bisulfite-converted DNA	32
Determine the integrity of the hisulfite-converted DNA	3!

Kit components and storage

Store kit components at -20 °C for long-term storage or at 4 °C for short-term storage.

Component	Amount
Unconverted Human Male gDNA (Control Sample 1) (100 ng/µL)	50 μL
Converted Human Male gDNA (Control Sample 2) (10 ng/µL)	20 μL
20× Non-Conversion Control Primer Mix	20 μL
20× Conversion Control Primer Mix	20 μL
20× Quantitation Control Primer Mix	20 μL
20× Long Amplicon Control Primer Mix	20 μL

Use an external sample control for bisulfite conversion

Use the Unconverted Human Male gDNA (Control Sample 1) (100 ng/ μ L) as an external sample control during the bisulfite conversion.

Perform bisulfite conversion of Control Sample 1

- 1. Prepare 45 μ L sample:
 - 1 μL Unconverted Human Male gDNA (Control Sample 1) (100 ng/μL)
 - 44 µL deionized water
- **2.** Prepare the bisulfite-converted DNA:
 - a. Prepare the Conversion Reagent (page 10)
 - **b.** Lyse the cells and denature the DNA (page 11) (skip the cell lysis step)
 - **c.** Perform bisulfite conversion of the denatured DNA (page 11)
 - **d.** Desalt and desulfonate the samples (page 12)
 - e. Assess the yield and quality of the bisulfite-converted DNA (page 14)

How to use the bisulfite-converted Control Sample 1

After you complete bisulfite conversion of the Unconverted Human Male gDNA and your DNA samples, you can use the Unconverted Human Male gDNA as an external sample control when you:

- Determine the efficiency of bisulfite conversion (page 29)
- Quantify the amount of bisulfite-converted human genomic DNA (page 32)
- Determine the integrity of bisulfite-converted human genomic DNA (page 35)

Determine the efficiency of bisulfite conversion

After you perform the bisulfite conversion procedures of Control Sample 1 and of your human genomic DNA samples, perform real-time PCR of the samples and controls to determine:

- The amount of unconverted human genomic DNA using 20X Non-Conversion Control Primer Mix.
- The amount of converted human genomic DNA using 20X Conversion Control Primer Mix.

Based on the difference in the C_T values, you can determine the conversion efficiency.

Required materials

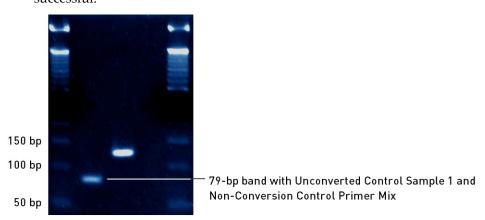
- Unconverted Human Male gDNA (Control Sample 1) (100 ng/μL)
- Bisulfite-converted Control Sample 1
- Converted Human Male gDNA (Control Sample 2) (10 ng/μL)
- Your bisulfite-converted human genomic DNA samples
- 20X Non-Conversion Control Primer Mix
- 20X Conversion Control Primer Mix
- MeltDoctor[™] HRM Master Mix
- Deionized water
- Real-Time PCR System
- E-Gel® 4% High-Resolution Agarose Gel
- TrackIt[™] 50 bp DNA Ladder

Amplify the unconverted and converted human genomic DNA

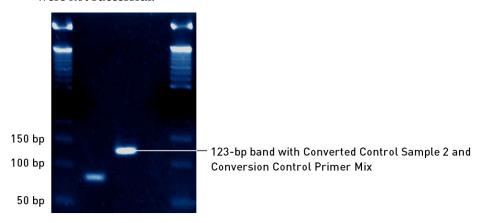
Note: For detailed instructions on how to set up and run your real-time PCR instrument, refer to the appropriate guide for your instrument.

1. Amplify the samples and controls in two sets of reactions: one set of reactions with 20X Non-Conversion Control Primer Mix and the other set of reactions with 20X Conversion Control Primer Mix:

Component	Volume per reaction
DNA sample or control	1.0 µL
One Control Primer Mix: • 20× Non-Conversion Control Primer Mix or • 20× Conversion Control Primer Mix	0.5 μL
MeltDoctor [™] HRM Master Mix	5.0 μL
Deionized water	3.5 µL
Total Volume	10 µL

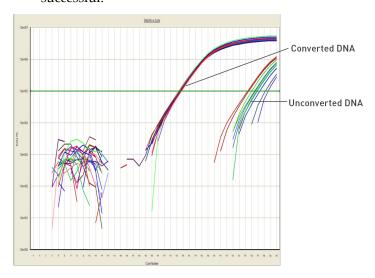

2. Run the reactions in a Real-Time PCR System:

Stage	Step	Temp	Time
Holding	Enzyme activation	95 °C	10 min
Cycling (40 or 45 cycles)	Denature	95 °C	15 sec
	Anneal	60 °C	1 min
Melt curve/dissociation	Denature	95 °C	15 sec
	Anneal	60 °C	15 sec
	Melt	95 °C	15 sec

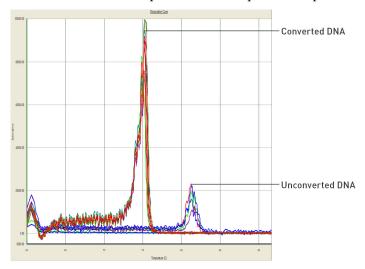

Review the size of the PCR products

Run a 4%E-Gel[®] agarose gel to determine whether the PCR products you obtained are the expected size and to compare the amounts of converted and unconverted DNA.

- 1. Review the lanes with samples and controls amplified using the Non-Conversion Control Primer Mix:
 - In the lanes with the bisulfite-converted DNA samples, do you see no detectable bands? If you see a 79-bp band, the bisulfite conversion may be incomplete. If you see the 79-bp band in the lane with Converted Control Sample 2, the reactions may be contaminated.
 - In the lane with Unconverted Control Sample 1, do you see a 79-bp band? If you do not see the 79-bp band, the amplification reactions were not successful.



- **2.** Review the lanes with samples and controls amplified using the Conversion Control Primer Mix:
 - In the lane with Unconverted Control Sample 1, do you see no detectable bands? If you see the 123-bp band, the reactions may be contaminated.
 - In the lanes with the bisulfite-converted DNA samples, do you see a distinct, strong 123-bp band in each lane? If the band is not clear or is not strong, the bisulfite conversion may be incomplete.
 - In the laneswith Converted Control Sample 2, do you see a distinct, strong 123-bp band? If you do not see the 123-bp band, the amplification reactions were not successful.



Determine the efficiency of bisulfite conversion

- 1. Review the amplification plots and C_T values:
 - For the bisulfite-converted DNA samples, are the C_T values for the amplification reactions using the 20× Conversion Control Primer Mix low? If you see high C_T values, then the bisulfite conversion may not been successful.
 - For the bisulfite-converted DNA samples, are the C_T values for the amplification reactions using the 20X Non-Conversion Control Primer Mix high? If you see low C_T values, then the bisulfite conversion may not been successful.

- **2.** Review the Tm peaks in the Melt Curve:
 - Do you see the Tm peak with your samples that were amplified using the 20X Conversion Control Primer Mix?
 - Do the control samples show the expected Tm peaks?

- **3.** Compare the fluorescence generated in the Control Primer Mix 1 reactions to the fluorescence generated in the Control Primer Mix 2 reactions:
 - For the Control Primer Mix 2 reactions, do the fluorescence levels exceed the threshold between cycles 8 and 35?
 - For the Control Primer Mix 2 reactions, is there an exponential increase in fluorescence?
- **4.** Calculate the efficiency of bisulfite conversion for each sample:

Conversion efficiency =
$$\left(\frac{2^{(-\Delta C_T + 1)}}{2^{(-\Delta C_T + 1)} + 1} \right) \times 100$$

Note:
$$\Delta C_T = C_T \text{ (converted)} - C_T \text{ (unconverted)}$$

Note: To use this formula to calculate the conversion efficiency, you need to use at least 10 ng of converted DNA sample in the PCR amplification reactions. If you are performing bisulfite conversion with small samples such as FFPE samples, we recommend that you perform bisulfite sequencing to calculate the conversion efficiency.

Expected results

Bisulfite conversion is successful if $\Delta C_T = C_{T \text{ (converted)}} - C_{T \text{ (unconverted)}}$ value is less than -7 and the percentage of bisulfite conversion is \geq 99.5%.

Sample	Amount of unconverted DNA: Non-Conversion primer mix target (79 bp)	Amount of bisulfite-converted DNA: Conversion primer mix target (123 bp)	Expected % of bisulfite conversion
Unconverted Control Sample 1	Amplification	No amplification	0%
Bisulfite-converted Control Sample 1	Little or no amplification	Amplification	≥ 99.5%
Converted Control Sample 2	No amplification	Amplification	100%
Unknown sample	Little or no amplification	Amplification	≥ 99.5%

Quantify the amount of bisulfite-converted DNA

Perform a standard curve experiment on a Real-Time PCR System using the Converted Human Male gDNA (Control Sample 2) (10 ng/ μ L) and 20X Quantitation Control Primer Mix to quantify the amount of bisulfite-converted human genomic DNA in your samples.

Required materials

- Converted Human Male gDNA (Control Sample 2) (10 ng/μL)
- Bisulfite-converted Control Sample 1
- Your bisulfite-converted human genomic DNA samples
- 20X Quantitation Control Primer Mix
- MeltDoctorTM HRM Master Mix
- Deionized water
- Real-Time PCR System

Guidelines for preparing the standard dilution series

Prepare a standard dilution series using the Converted Human Male gDNA (Control Sample 2) (10 ng/ μ L) to generate the standard curve. Follow these Applied Biosystems recommendations:

- Perform 1:2 serial dilutions, and prepare at least 5 standards.
- Select the standards so that the range of standard concentrations is within the expected range of converted DNA concentrations. The expected range is $0.5\text{--}10~\text{ng/}\mu\text{L}$.
- Prepare sufficient standard so that you can prepare 3 replicate reactions for each dilution point

Example of standard dilution series

In the example below, the range of DNA concentrations is $0.3125 \text{ ng/}\mu\text{L}$ – $10 \text{ ng/}\mu\text{L}$.

Standard	Source	Source volume	Volume of deionized water	Standard concentration (ng/µL)
Standard 1 (undiluted)	Control Sample 2 (10 ng/µL)	10 μL	0 μL	10 ng/μL
Standard 2 (1:2)	Standard 1	5 μL	5 μL	5 ng/μL
Standard 3 (1:4)	Standard 2	5 μL	5 μL	2.5 ng/μL
Standard 4 (1:8)	Standard 3	5 μL	5 μL	1.25 ng/μL
Standard 5 (1:16)	Standard 4	5 μL	5 μL	0.625 ng/μL
Standard 6 (1:32)	Standard 5	5 μL	5 μL	0.3125 ng/μL

Amplify and melt the bisulfite-converted human genomic DNA

For detailed instructions on how to set up and run your Real-Time PCR Instrument, refer to the appropriate guide for your instrument.

- Prepare a dilution series of the Converted Human Male gDNA (Control Sample 2) (10 ng/µL) to generate the standard curve.
- **2.** Prepare the reactions:

Component	Volume per reaction
Converted DNA sample, standard, or control	1.0 µL
20× Quantitation Control Primer Mix	0.5 μL
MeltDoctor [™] HRM Master Mix	5.0 μL
Deionized water	3.5 µL
Total Volume	10 μL

3. Run the reactions in a Real-Time PCR System:

Stage	Step	Temp	Time
Holding	Enzyme activation	95 °C	10 min
Cycling (40 or 45 cycles)	Denature	95 °C	15 sec
	Anneal	60 °C	1 min
Melt curve/dissociation	Denature	95 °C	15 sec
	Anneal	60 °C	15 sec
	Melt	95 °C	15 sec

Review the amplification results

For more information about reviewing and publishing the results for a standard curve experiment, refer to the appropriate guide or the Help for your instrument.

- 1. Verify that the samples amplified:
 - Are the C_T values between 20 and 35?
 - Is there an exponential increase in fluorescence?
- **2.** Look for outliers with C_T values that differ from replicates by more than 2. If there are any outliers, omit them from the analysis, then reanalyze.
- **3.** Look for one sharp Tm peak in the Melt Curve.

- **4.** Review the amplification efficiency and the correlation coefficient in the Standard Curve:
 - Is the slope close to -3.3, indicating optimal, 100% PCR amplification efficiency?
 - Is the R² value >0.99, indicating that the C_T data points of the standard reactions correlate well with the regression line in the standard curve?
- **5.** Review the results table for quantities and flags:
 - **a.** Group the results by replicates, and review whether the quantities are similar within each replicate group.
 - **b.** If available, group the results according to flags, and review the flags that were applied.
 - **c.** If available, group the results according to the C_T value, and review which reactions produced C_T values outside the expected range.
 - **d.** If the data are acceptable, review the quantities for your samples.

Determine the integrity of the bisulfite-converted DNA

After you perform bisulfite conversion of Control Sample 1 and your samples, perform PCR amplification using the 20× Long Amplicon Control Primer Mix to determine the integrity of the bisulfite-converted DNA.

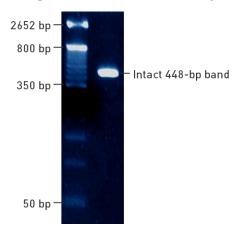
Required materials

- Converted Human Male gDNA (Control Sample 2) (10 ng/μL)
- Bisulfite-converted Control Sample 1
- Your bisulfite-converted human genomic DNA samples
- 20× Long Amplicon Control Primer Mix
- Use a PCR Master Mix that does not contain a fluorescent dye
- · Deionized water
- Thermal cycler
- E-Gel® 4% High-Resolution Agarose Gel
- TrackIt[™] 50 bp DNA Ladder

Amplify the unconverted and converted human genomic DNA

Note: For detailed instructions on how to set up and run your thermal cycler, refer to the appropriate guide for your instrument.

1. Prepare the reactions:


Component	Volume per reaction
DNA sample or control	1.0 µL
20X Long Amplicon Control Primer Mix	0.5 µL
PCR master mix (2X)	5.0 µL
Deionized water	3.5 µL
Total Volume	10 µL

2. Run the reactions in a thermal cycler:

Stage	Step	Temp	Time
Holding	Enzyme activation	95 °C	10 min
Cycling (40 or 45 cycles)	Denature	95 °C	15 sec
	Anneal	60 °C	1 min

Review the size of the PCR products

Run a 4% E-Gel $^{\circledR}$ agarose gel to determine whether the PCR products you obtained are 448 bp and that the DNA is not degraded.

Prepare Methylated DNA Standards for HRM Analysis

Product information

Purpose of the kit

Use the Cells-to- CpG^{TM} Methylated and Unmethylated gDNA Control Kit (PN 4445552) to prepare methylated DNA standards with known levels of methylation:

- The Methylated Human Male Genomic DNA is 100% methylated
- The Unmethylated Human Male Genomic DNA is 0% methylated

Perform bisulfite conversion of the methylated DNA standards, then use the converted methylated DNA standards when you perform high resolution melting (HRM) analysis to determine the percentage of methylated DNA in your samples.

Kit components and storage

Store kit components at -20 °C for long-term storage or at 4 °C for short-term storage.

Component	Amount
Methylated Human Male gDNA (100 ng/µL)	50 μL
Unmethylated Human Male gDNA (100 ng/μL)	50 μL

Prepare methylated DNA standards

You need to convert a sufficient amount of methylated DNA standards to perform HRM analysis for each HRM assay.

1. Using the Methylated Human Male gDNA and the Unmethylated Human Male gDNA controls, prepare methylated DNA standards that contain the same amount of DNA but different ratios of 100% methylated and 0% methylated DNA, for example: 0%, 1%, 2%, 5%, 10%, 15%, 20%, 25%, 50%, and 100%.

Note: To detect low levels of methylation, add more standards between 0% and 2% methylation, for example: 0.0%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, and 100%.

- **2.** For each ratio, prepare 45 μL sample:
 - 100 ng to 1 μg of 100% methylated DNA and 0% methylated DNA mixed accordingly
 - Sufficient deionized water for a total sample volume of 45 μL

Note: If you are performing multiple HRM assays, consider increasing the amount of mixed DNA for each ratio. Make sure that each sample contains the same amount of DNA.

- **3.** Proceed with denaturing the DNA (page 11), then complete the bisulfite conversion procedures:
 - **a.** Prepare the Conversion Reagent (page 10)
 - **b.** Perform bisulfite conversion of the denatured DNA (page 11)
 - **c.** Desalt and desulfonate the samples (page 12)
 - **d.** Assess the yield and quality of the bisulfite-converted DNA (page 14)

Note: For information on how to perform HRM analysis using the bisulfite-converted methylated DNA standards, refer to the *Applied Biosystems High Resolution Melting Getting Started Guide* (PN 4393102).

Safety

This appendix covers:

Chemical safety	39
General chemical safety	39
SDSs	40
Biological hazard safety	41

Chemical safety

General chemical safety

Chemical hazard warning

WARNING! CHEMICAL HAZARD. Before handling any chemicals, refer to the Safety Data Sheet (SDS) provided by the manufacturer, and observe all relevant precautions.

Chemical safety guidelines

To minimize the hazards of chemicals:

- Read and understand the Safety Data Sheets (SDSs) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. (See "About SDSs" on page 40.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the SDS.
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the SDS.
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer's cleanup procedures as recommended in the SDS.
- Comply with all local, state/provincial, or national laws and regulations related to chemical storage, handling, and disposal.

SDSs

About SDSs

Chemical manufacturers supply current Safety Data Sheets (SDSs) with shipments of hazardous chemicals to new customers. They also provide SDSs with the first shipment of a hazardous chemical to a customer after an SDS has been updated. SDSs provide the safety information you need to store, handle, transport, and dispose of the chemicals safely.

Each time you receive a new SDS packaged with a hazardous chemical, be sure to replace the appropriate SDS in your files.

Obtaining SDSs

The SDS for any chemical supplied by Applied Biosystems is available to you free 24 hours a day. To obtain SDSs:

- 1. Go to www.appliedbiosystems.com, click Support, then select SDS.
- 2. In the Keyword Search field, enter the chemical name, product name, SDS part number, or other information that appears in the SDS of interest. Select the language of your choice, then click **Search**.
- **3.** Find the document of interest, right-click the document title, then select any of the following:
 - Open To view the document
 - **Print Target** To print the document
 - Save Target As To download a PDF version of the document to a destination that you choose

Note: For the SDSs of chemicals not distributed by Applied Biosystems, contact the chemical manufacturer.

Biological hazard safety

General biohazard

WARNING! BIOHAZARD. Biological samples such as tissues, body fluids, infectious agents, and blood of humans and other animals have the potential to transmit infectious diseases. Follow all applicable local, state/provincial, and/or national regulations. Wear appropriate protective equipment, which includes but is not limited to: protective eyewear, face shield, clothing/lab coat, and gloves. All work should be conducted in properly equipped facilities using the appropriate safety equipment (for example, physical containment devices). Individuals should be trained according to applicable regulatory and company/institution requirements before working with potentially infectious materials. Read and follow the applicable guidelines and/or regulatory requirements in the following:

- U.S. Department of Health and Human Services guidelines published in *Biosafety in Microbiological and Biomedical Laboratories* (stock no. 017-040-00547-4; www.cdc.gov/biosafety/publications/index.htm)
- Occupational Safety and Health Standards, Bloodborne Pathogens (29 CFR§1910.1030; www.access.gpo.gov/ nara/cfr/waisidx_01/29cfr1910a_01.html).
- Your company's/institution's Biosafety Program protocols for working with/handling potentially infectious materials.

Additional information about biohazard guidelines is available at: www.cdc.gov

Appendix D Safety

Chemical safety

Documentation and Support

Related documentation

The following related documents are available:

Document	Part number
Cells-to-CpG [™] Bisulfite Conversion Kit (2x96) Protocol	4449006
Cells-to-CpG [™] Bisulfite Conversion Kit (2x96) Quick Reference Card	4448996
Cells-to-CpG [™] Bisulfite Conversion Kit (50) Protocol	4448998
Cells-to-CpG [™] Bisulfite Conversion Kit (50) Quick Reference Card	4449007

Portable document format (PDF) versions of these documents are available on the Applied Biosystems web site at **www.appliedbiosystems.com**.

Obtaining support

For the latest services and support information for all locations, go to:

www.appliedbiosystems.com

At the Applied Biosystems web site, you can:

- Access worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities.
- Search through frequently asked questions (FAQs).
- Submit a question directly to Technical Support.
- Order Applied Biosystems user documents, SDSs, certificates of analysis, and other related documents.
- Download PDF documents.
- Obtain information about customer training.
- · Download software updates and patches.

